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TEE LOAD DISTRIBUTION DUE TO SIDESLIP ON TRIANGULAR,

TRAPEZOIDAL, AND RELATED PLAN FORMS

IN SUPERSONIC FLOW

By Arthur L. Jones and Alberta Alksne

SUMMARY

Expressions are presented for the load distribution on a represent-
ative group of plan forms in sideslip at supersonic speeds. These
expressions were obtained by the application of lifting-surface theories
based on the linearized equation for compressible flow. Sketches of the
load distributions are included.

INTRODUCTION

In three recent reports (references 1, 2, and 3) the variations of
rolling moment, of yawing moment, and of lift and pitching moment with
sideslip have been investigated for a group of wing plan forms for super-
sonic speeds. The pressure distributions required to compute these
forces and moments were calculated using linearized compressible-flow
theory for thin airfoils. Since the reports referred to were concerned
with the detailed expressions of moments and forces for the various plan
forms, it was decided that the reference value of the pressure distribu-
tions, their possible utility in stress analysis and design, and the
desirability of including some pictorial representations justified the
treatment of these distributions as the subject of a separate report.

By virtue of the many approximations involved in its derivation,
the linearized theory applied constitutes one of the most simplified
analytical approaches to compressible-flow problems. Furthermore, in
addition to the factors approximated in the linearization of the poten-
tial theory, the analysis employed does not account for the lack of
complete rigidity of a wing nor the effects of viscosity in the flow.
These are two important factors that may have considerable effect on
the actual distribution of the pressure on a wing. Thus, it is not
expected that these pressure distributions will conform precisely to

£those obtained in the actual physical flow. It is expected, however,
that these theoretical solutions will be good first approxintations for
the plan forms and conditions considered herein and they should provide
satisfactory indications of the pressure-difference contours in general
if not in detail.
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The investigation covers the following configurations: (See figs.
1 and 2.) (1) Triangular plan forms with subsonic leading edges or with
supersonic leading edges; (2) trapezoidal plan forms with all possible
combinations of raked-in, raked-out, subsonic, or supersonic tips; (3)
rectangular plan forms; and (4) two swept-back plan forms with super-
sonic trailing edges developed from the triangular wings. Illustrations
are included in order to provide a convenient visual correlation between
the expressions for the pressure distributions and for the moments and
forces that were calculated from them (references 1, 2, and 3). The
arrangement of the appendixes was based on the desire to present a syste-
matic and convenient compilation of expressions and illustrations for the
load distributions for the various plan forms considered.

SYMBOLS, COEFFICIENTS, AND AXES

A aspect ratio ('b)

b span of wing measured normal to plane of symmetry

B Mach number parameter ( M/ - -)

Bm ratio of tangent of right tip angle to tangent of Mach

cone angle (tax)

cr chord of wing in plane of symmetry

E(cp,k) incomplete elliptic integral of the second kind with

modulus k (0 ol -k12 sin 2 e dO)

E complete elliptic integral of the second kind with modulus k

[E (.k)]

F(cp,k) incomplete elliptic integral of the first kind with modulus k

( %/ 1-k2 sin
2

K complete elliptic integral of the first kind with modulus k

[F (.k)]

I over-all longitudinal length of swept-back wing

m slope of right wing tip measured in plane of wing (positive
for raked-out tip, negative for raked-in tip)
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M1 free-stream Mach number

no,n, slopes of plan-form edges relative to wind axes

A P pressure differential across wing surface, positive upward

iP loading coefficient
q

q free-stream dynamic pressure ( V2)

S area of wing

u perturbation velocity parallel to positive x axis

V free-stream velocity

w perturbation velocity parallel to z axis (positive upward)

x,y,z rectangular coordinates of wind axes (fig. 3)

Cangle of attack, radians

1sideslip angle (positive when sideslipping to right), degrees

p. Mach angle (tan-i l)

rectangular coordinates of stability axes (fig. 3)

,',,' rectangular coordinates of body axes (fig. 3)

p air density in the free stream

CP perturbation velocity potential

Subscripts

A,B,...V expressions given in Appendix B

The body axes are generally a right-handed system of three orthog-
onal axes as shown in figure 3 with the longitudinal axis ' lying in
the plane of the wing. The stability axes are, in effect, the body axes
rotated about the lateral axis I' (through --a) until the longitudinal
axis is in the horizontal plane containing the free-stream vector; a
subsequent rotation about the vertical axis t (through 0) would bring
the longitudinal axis in line with the free-stream vector and the axes
would now be coincident with the wind axes.
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It should be mentioned that the orientation of these axes as shown
in figure 3 is convenient for the calculations required to determine
the pressure distributions and the resulting forces and moments. In the
application of these results to the calculation of the motion and dynamic
stability of an airplane, however, the axes are usually rotated so that
the positive direction of the longitudinal axis is into the free stream
and the positive direction of the vertical axis is downward, that is,
toward the undercarriage of the airplane.

METHOD OF ANALYSIS

The development of the expressions for the pressure (i.e., load)
distributions on wing plan forms in sideslip was merely an application
of supersonic wing theory. In this report, only the part of the theory
relating to the flat-plate or so-called "additional" loading, which is
the loading resulting from a change in angle of attack, will be consid-
ered. The loadings due to camber and twist are usually assessed inde-
pendently, and the sum of these two loadings is often referred to as the
"basic" load distribution.

By linearization of the partial differential equation for compres-
sible flow it is possible to develop a simplified lifting-surface theory
for thin airfoils. The linearization is made possible by the assumption
that, for thin airfoils, the perturbation velocities induced by the air-
foil are small relative to the free-stream velocity. If the free-stream
velocity vector is parallel to and in the direction of the positive x
axis and if cp denotes the perturbation velocity potential for isen-
tropic flow, the linearized partial differential equation for steady-
state conditions at supersonic velocities is

(M2-1 ) 62 ,p 62 CP 62 Cp 0 x z

where M, is the Mach number of the free stream. There have been a
number of methods developed that provide means of fitting solutions of
this equation to the boundary conditions of thin-airfoil theory (e.g.,
references 4 through 9). The results to be given herein were determined
through the general use of source-sink and doublet distributions (refer-
ences 4, 5, 6, and 9). In particular, the method of reference 6 was
applied to cases where a subsonic tip occurs in conjunction with a
supersonic leading edge or tip; whereas the load distributions for all
other edge and Mach cone arrangements were calculated by application of
the methods summarized in reference 9.

The first step in the analysis is the establishment of the boundary
conditions. For thin airfoils the boundary conditions are usually
restricted to the z=O plane. Thus, if the local angles of attack at
various spanwise stations of the wing are specified and it is assumed
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that the wing is coincident with the z=0 plane,^he boundary conditions

are set. Next, the expressions for the loading - and the angle ofq

attack a are formulated in terms of parameters that can be related to
the potential solutions of the differential equation and to the boundary
conditions. For linearized theory these relationships are

AP 4u (if u is for the upper surface)
q V

where

u xz=O

and w

V

where

w 1

Thus the problem is reduced to determining q in such a manner that
_ W is equal to the specified local angle of attack at every spanwise
V

station of the wing.

The general problem of specifying the angle of attack and of solv-
,ing for the resulting velocity potential is one that usually requires
the solution of an integral equation. (See reference 9.) For cases
where the edges of the plan form are supersonic, however, the lack of
interaction between the upper and lower- surfaces of the wing permits the
problem to be solved by a distribution of sources in accordance with the
local slopes of the plan form and a straightforward integration of their
potentials. The triangular and trapezoidal plan forms with supersonic
edges were treated in this manner. Likewise, wherever a subsonic edge
is in conjunction with a supersonic leading edge or tip a straightforward
integration can be employed. For this case reference 6 provides a method,
based on the consideration of the upwash between the subsonic edge and the
Mach cone, whereby the usual operations involved in the solution of the
integral equation are eliminated. In general, however, it is necessary
to go through rather involved procedures to calculate the load distribu-
tion when the camber, twist, and angle of attack of the plan form are
specified. These procedures are discussed in reference 9 wherein, for
conical-flow conditions, a loading element is used to set up the inte-
gral equation and then the usual integral-equation techniques are
employed to solve it.

It should be mentioned also that, when the trailing edge is sub-
sonic, an additional stipulation based on some physical concept for the
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flow, such as the Kutta condition which is applied herein, is needed in
order to eliminate all but one of an infinite number of potential solu-
tions that will satisfy the boundary conditions.

PRESENTATION OF RESULTS

All the plan forms and conditions investigated in references 1, 2,
and 3 were made up using the five following combinations of straight
edges:

1. A supersonic leading edge in conjunction with a subsonic
leading edge

2. A supersonic leading edge in conjunction with a subsonic

trailing edge

3. Two subsonic leading edges

4. A subsonic leading edge in conjunction with a subsonic
trailing edge

5. Two supersonic leading edges

The expressions for the load distributions on these five combina-
tions are given in Appendix A in terms of the wind-axes notation.

In order to provide an easy correlation between the load distribu-
tions and the aerodynamic characteristics of the plan forms presented
in references 1, 2, and 3, Appendix B contains the expressions for the

load distributions on various sectors of the plan forms in terms of the
plan-form parameters and the body-axes notation. Since the plan forms
are restricted to the z=O plane for the purpose of analysis by the
thin-airfoil theory, the body-axes notation, in a sense, refers to coor-
dinates on the projection of the plan form onto the z=O plane, which
corresponds to giving the coordinates in terms of the stability-axes
notation. This slight ambiguity between the body axes and the stability
axes, caused by the assumptions employed in thin-airfoil theory, should
not be allowed to cause any doubt about the direction of the normal
force. This force acts perpendicular to the plate and in a direction
parallel to the t' axis, not the t axis.

The order of presentation of the plan-form sectors in Appendix B
of this report is a duplicate of the arrangements of the Appendixes B
of references 1, 2, and 3. A sketch of the load distribution is pre-
sented for each sector in Appendix B in order to provide a convenient
visual interpretation of the load distribution.

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Moffett Field, Calif., Oct. 10, 1949.
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APPEINDIX A

SUMMARY OF EXPRESSIONS FOR LOAD DISTRIBUTION ON WING

ELEME JS IN TERMS OF WIIW-AMS NOTATION

Expressions Apply to Crosshatched Plan-Form Areas

1. Supersonic leading edge in conjunction with a subsonic leading

edge:

x

y

yB

q Bn

noo)
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2. Supersonic leading edge in conjunction with a subsonic trailing edge:

Y
E =

yy
x7

Y7
7n

87n y-Bo

yy

yy

x B
7 x

2m~~~ y_(2

qP _ 2_ 2G (n- -no+ ) 4 - y-)
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where

E is the complete elliptic integral of the second kind with modulus

1--LG2~

G _B = n~/(-~ 2 ) (- 2n 2

B(n1 -no)

4. Subsonic leading edge in conjunction with a subsonic trailing edge:

/ -Y

y iy y

x y no

s_ 4a - no

7X

when no =0

EJ

i7

when nL =-B

y 1 2N

l-Bn o

when no > 0; n, < 1
B

Bnl - GI G, + k'}

1 1-

(Gi-Bno) 1 - [E GKE (  1']
nG) VI+E Gkk-----iE F( c,k)-KE(,k)
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where

G, 1+B 2n nno- J(-B~n,2) ( 1-B 2no2 )
G1 =

B (n+no)

k' Ga-Bno K = F(",k)
I-BG3.n o  

F

k E = 1 2E(,k)

P= sin-
1  IG -kt 2

Glk

5. Two supersonic leading edges:

y

y 1

no 2

y9

n0
2
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2cL i~cL njB2 ~-

2m ~ 4aLF~ 2 1
- =- sin1

q 2 B =, - TB2-L 1 y\I,

no2 n02 L --n~~o +

APPENDIX B

SUMMARY OF EXPRESSIONS FOR LOAD DISTRIBUTION IN
TERMS OF BODY-AXES NOTATION

Expressions apply to crosshatched and heavily
shaded plan-form areas

1. Triangular Wings:

* A.

Ti

y

/ \L

/

/? 1 a
AP/G

q E Bml+ an2p (m+ Tan 3

* where.

E is the complete elliptic integral of the second kind with modulus
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G -(1-rn
2tan2 3) + B 2 (rn2 -tan2 p)

2.Bn( l+tan2 3)

M(-r tan 1) 2 -B2 (rn+ tan p)2][ (l+r tan p) 2 ...B2 (M tan p)2]

2Brn(l+ tan2 p)

B.

y

<-P

1-BB

when tan Pr

P1 =

nI(1+rn tan 1)+B(rn- tan P3)
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when m <tan ~<~x
B+m

[Bm tan 3)-h(lm tan )(1 ta n p)

h + E + k IE F (qk) --K E (pk)J1 i _ _-k

where

G,(1_rn? tan2 p3)-_B2 (M?-tan 2 3)

2B(1+M2) tan J

tap~) 2__B2(nM-tan p) 2 ][(1_M tan p)2_B2(M+tan p3)2 ]

2B(1+M2 ) tan ~

k = - Gl(l+m tan P)+B(m-tan f3)
k 11:12 k' (1+m tan 0)+GB(m-tan 0)

G1 
2-kt2

c= s inl Glk

K =F(".Fk); E =E(.,k)

2 2
C.

TI t

y

M7/T

2t
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(A?) 4a(m+tan 0)

(,Lq~ A/jB2(m+tan p) 2 (JM tan p3)2

(A?) 8a(m+tan P3) f[B(m+tan 1)-(1-m tan 3) I(m-tan 13)

C2  9,,,/B2(~a 13)2 (-M tan p3)2 [B(m-tan 1)+(l+m tau 1))(m+tan 13)

2m[(lB tan 13)-B tan 0lm )

[m(B+tan) 1-i- tan 13) ]( + ~

tan7-1  [(-tnP-lBtnOIM
/2m[(1-B tan P)- ILL~ (B+tan 03)]

D.

T,

. 2

x

(A?> 4C(m+ tan f3)

)q/1l. Ba(m+tan 0)24.1M tan 03)2

8c(m.,tanl p) t m(Bta 13-B- tan 03Y1(m+

(q 2 ir.!B 2 (M+tan 1) 2 _(1-M tan p3)2 . 2m((i- tan P)- T3" (B+ tan 03)]
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E. tan P <-
B+m

TI

(Ap 2 4a.(m tan ) .+

q i./B2(M+tan 1)2I1_ tan p3)2L

B2(rn-Itan + tan P-lmtan P(- tn0
2 13)q B( .- (1 an f) (1 a

4(i-tan p3)Fi

n./B2(mtan 1)2.(1+M tan P3)2

81 B2(M-tan 1)(Y + tan 3)-(1+M tan P3)1-- tan )j
si* B(m+ !4 )(1+tan23)

4m~m+tan )

q Es /B2(M+tan 1)2(1-M tan 03)2
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E*. tan p3 = - (See footnote a.)
B+m

/T

I~.(2-- 2B-) y

4a,(m2 +2mB-l)+
q 2 ( B(e+22MBj)2-B+2m-~m 2 B)

BJf leading-1 edge-1) hits) Mach2meB con) fTo apex.
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F.

TI,

xx

* (:?l M-a [ 1-b/2)](-a

Ft rB-~ [TI (B-tan 0)+(l-B tan j3)

F2B
2 tan~

G.

TI

2 y

/2r
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8M, (m+tan 0)(B-tan 0) X(?9=v. Bt 2 B(m-itan 1)+(1-m tan 13)

/!~Cb2) (B-tan 1)+(i-B tan 13)

M.tan -ta) 1)
(~)G2Van213

2. Swept-back wing components:

H.

/ \

/- -7T~
/T

/x

/ AP)
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y

q q

Jtan Bn-1 l ~()

IT

(~&~= E2
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j*. tan =Bm-1~ (See footnote b.)
B+m

x ~

(*= (?)*2

K. ta ~<Bm-1
B+m

/y

x

(a)2= (a)2

bLeft leading edge hits Mach cone from apex.
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K*. tan Bin-i (See footnote b.)
B+m

(AP) = (P)*

3.Trapezoidal wing components.

bLjeft leading edge hits Mach cone from apex
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4,mB2,(!L + tan 0)+(l-IL tan 0) tan +

+ c B2-a~ B(1+tan2 P)j

4 a(m-tan ~

Bsinin0)a + tan 0)+(1+m tan 0)(1- TLr tan0)j
L2 B(m+ 4.~)(+ tan2p)

M.

TI

y

/

(1-B tan 0)- -j- (B+tan 0)
8______ (rn-tan_0)(B+tan_0) i_____ t_________ +

q iqB 2 tap B(min-tan P)+(l+m tan r3) (m+ flL(B+tan 13)

(m+ DL--)(B+tan 0) 1
tan1l t

(1--B tan P)- Tl;' (B+tan 13)I
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N.I

y

/

x

8m (m+ Dr)(B+tan 03)

___ tan~l __ t__ __

0.

TI

y

Ti'

_______tan7

q 0i/B 2-tan2 p3 (1+B tan 0')+ f-(B-tan P3)
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P.

y

IT

/ x

8c~ (n-i-an 1 )(B- an / (1-B tan P)- + IL,' (B-tan 1)
AP) 8mB2-tan213 LBBmttan ) +

qp x(,/ B2t13B~~a )+(l-m tan 13) (in Dr) (B-tan P3)

(in- Tl.)(B-tan 13)1
tan 1  k

/ (+B tan 03)+ fi (B-tan 13)

II

x
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B2QL' +tan p3)+(l- !lj tan p) tan P
sin:

q B7:an 2pB(l+tan 2 P3)

4mc(m+tan j3)

3 1 T B 2 (M+tan p)2-(lM tan p)

F~ ~ 2(D+ tan f3)(m-itan 03)-(i-m tan P)(1- tan ~)

+2 i B(m- I5r)(1+tan2p3)]

R.

TI
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24

here in ShA b e la e y 
N R2*Kq2l e e~aed + -ur

2 -mcr)
R**.

22~r



NACA TN 2007 27

where ~~ + (,n) -()mr

wher( ) should be replaced by iT' + (er)

Y1 in ( ) should be replaced by ' (b - c

TI

/4 

/2

I 4Q/2

()be(eplce by (-)2
R2* *
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y

2/ x

(a-) + a-)
where r'in should be replaced by T11 + m~ -Ie)

TI' in ( E ) should be replaced by n~' -(.-mcr)q 2

TI

/y

/q-b2
/m

x
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R, = (a )

wher in ( ) should be replaced by +j (h. - mcr)

P

S.

TI,

Y

t~b/2)

M= TI

(~ s =y B-tai2p
5**

y

(b2
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wh( ) should be replaed by + b

where in should be replaced by ' + b

q 0 2

s**.•

y

/

x

where il in should be replaced by -' +

in (- 2) should be replaced by , - b

2



aNACA TN 2007 31

* T.

(-)T *B2 tan2p

U.

M-7 y

- (~) I(m-tan p)
\% B U B2(M~tan p) 2 (1+M tan p3)2
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V.

TI'

y

/ -

/ -li

( l c(m+tan 0)

V I B2(m+tan p))2 _(l- tan 0)2
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Figure 1.-The triangular, trapezoidal, and rectangular p/an -

form types investigated.
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Bm/_V

~/

Figure Swept-back p/an forms and Mach cone
configurations investigated.
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xyz rectangular coordinates of wind axes
~~ rectangular coordinates of st ability axes

~ rectangular coordinates of body axes

Figure 3.-Coordinate axes sys tems used din analysis.
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